Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 21-30, 2023.
Article in Chinese | WPRIM | ID: wpr-969595

ABSTRACT

ObjectiveTo explore the mechanism of Huangqisan (HQS) in regulating autophagy to alleviate hepatic steatosis and improve non-alcoholic fatty liver disease (NAFLD) based on adenosine 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. MethodThe main chemical components and targets of HQS and NAFLD-related targets were collected from database and the intersection targets were used for Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The protein-protein interaction (PPI) network was constructed, and in vivo experimental verification was conducted. Sixty C57BL/6J male mice were randomly divided into normal control group (NCD), model group high-fat diet (HFD), metformin group (MET, 0.25 g·kg-1), low-dose Huangqisan group (HQS-L, 0.5 g·kg-1), and the high-dose Huangqisan group (HQS-H, 1 g·kg-1), with 12 mice in each group after a one-week acclimatization period. NAFLD model was induced by HFD, and intragastric administration was performed at the same time, once a day for 13 weeks. Random blood glucose, serum total cholesterol (TC), triglyceride (TG), non-esterified fatty acid (NEFA), low density lipoprotein-chdesterol (LDL-C) levels, and liver TG content were determined. The liver weight was weighed, and liver index was calculated. Hematoxylin-eosin (HE) staining, oil red O staining, transmission electron microscope (TEM), real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), and Western blot were used to verify the effect and reveal the potential mechanism of C57BL/6J mice in vivo. ResultThrough network pharmacology analysis, combined with previous studies, it was predicted that HQS may improve NAFLD by regulating autophagy via the AMPK/mTOR signaling pathway. The result of in vivo experiment showed that, as compared with NCD group, random blood glucose, body weight, serum TC, LDL-C, NEFA, liver weight, liver index, and liver TG content of mice in the HFD groups were significantly increased (P<0.01). HE staining showed massive lipid droplets (LDs) vacuolated, oil red O staining showed lipid accumulation in liver cells, and no obvious autophagosomes and autolysosome were observed under TEM. The relative mRNA expression of LC3A、LC3B、AMPKα1 and protein expression of AMPK, phosphory phosphorylated(p)-AMPK, and p-AMPK/AMPK were significantly down-regulated (P<0.01), while the protein expression of microtubule-associated protein 1 light chain 3 (LC3)Ⅱ/Ⅰ and p-mTOR was significantly up-regulated (P<0.01). As compared with HFD groups, liver weight, serum TG, and NEFA levels in HQS-L and HQS-H groups were significantly deceased (P<0.05, P<0.01). HE staining and oil red O staining showed the improvement of liver pathological changes after HQS administration. Under TEM, a small amount of autophagosome and autolysosome were observed. Besides, liver index was significantly decreased in the HQS-L group (P<0.01), and random blood glucose, serum TC level and liver TG content were significantly decreased in the HQS-H group (P<0.05). The results of Western blot and Real-time PCR showed that the mRNA expression of LC3A and LC3B and the protein expression of LC3Ⅱ/Ⅰ, p-AMPK, and p-AMPK/AMPK were significantly up-regulated (P<0.01), while the mRNA expressions of p62 and protein expression of p62 and p-mTOR were significantly down-regulated (P<0.05, P<0.01). ConclusionHQS may promote autophagy and restore autophagy flux via the AMPK/mTOR signaling pathway to alleviate hepatic steatosis improving NAFLD.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 11-17, 2022.
Article in Chinese | WPRIM | ID: wpr-940414

ABSTRACT

ObjectiveTo investigate the effect of Huangqisan pellets (HQS) on the phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway and autophagy in the kidney of diabetic nephropathy (DN) rats. MethodDN rat model was established through high-fat diet combined with intraperitoneal injection of streptozotocin (35 mg·kg-1). DN rats were randomly assigned into model group, irbesartan (0.027 g·kg-1) group, low-dose HQS (0.54 g·kg-1) group and high-dose HQS (1.08 g·kg-1) group. The levels of 24 h urinary total protein (UTP), serum albumin (Alb), serum creatinine (SCr), urea nitrogen (BUN), triglyceride (TG) and total cholesterol (TC) were measured after 12 weeks of continuous administration. The pathological changes of renal tissue were observed via hematoxylin-eosin (HE) staining. The expression of podocyte split diaphragm proteins nephrin and podocin in the renal tissue were detected by immunohistochemistry. The protein levels and phosphorylation of key proteins in PI3K/Akt/mTOR signaling pathway, as well as the expression of yeast Atg6 homolog (Beclin1) and microtubule-associated protein 1 light chain 3 (LC3) in the renal tissue were analyzed by Western blot. ResultCompared with the control group, the model group showcased increased 24 h UTP, SCr, BUN, TG, and TC levels and decreased Alb level (P<0.01). After modeling, the rats showed granulosity of epithelial cells of renal tubules, thickening of capillary basement membrane, proliferation of mesangial cells, and sclerosis of glomerulus. Furthermore, modeling down-regulated the expression of nephrin and podocin in the podocyte hiatus of glomerulus (P<0.01) as well as the protein levels of p-PI3K, p-Akt, and p-mTOR and the autophagy markers LC3 and Beclin1 in renal tissue (P<0.01). Compared with model group, irbesartan and HQS decreased the 24 h UTP, Cr, BUN, TG, and TC levels, increased the Alb level, and alleviated the pathological damage of kidney. Moreover, they up-regulated the expression of Nephrin and Podocin in the podocyte hiatus of glomerulus, as well as the protein levels of p-PI3K, p-Akt, p-mTOR, LC3, and Beclin1 in renal tissue (P<0.05, P<0.01). ConclusionHQS may inhibit the PI3K/Akt/mTOR signaling pathway to enhance podocyte autophagy and protect the glomerulus, thus slowing down the development of DN.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 6-11, 2019.
Article in Chinese | WPRIM | ID: wpr-801824

ABSTRACT

Objective: To explore the effect of Huangqisan on endoplasmic reticulum stress signaling pathway in liver tissues of high-fat diet-induced obese rats and its mechanisms. Method: Male SD rats were selected and fed with high-fat diet for 7 weeks continuously to establish an obese rat model. Then, the rats were randomly divided into model group, low and high-dose Huangqisan group (1.2, 2.4 g·kg-1), and Lipitor group (2 mg·kg-1), and orally administered with drugs for 15 consecutive weeks. The control group and the model group were perfused with the same volume of normal saline. The body weight, epididymal fat coefficient and liver coefficient of each group were determined separately. Fasting plasma glucose (FPG), total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) were determined by biochemical reagent method. The epididymal visceral adipose tissue and liver pathological changes were observed by hematoxylin and eosin (HE) staining. And the protein expression levels of sterol regulation element-binding transcription factor 1 (SREBP-1c), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), inositol requiring enzyme 1 (IRE1α), p-inositol requiring enzyme 1 (p-IRE1α) in liver tissues were detected by Western blot methods. Result: Compared with the control group, the body weight, epididymal fat coefficient and liver coefficient of the model group were significantly increased(PPPα/p-IRE1α were increased(PPPPα/p-IRE1α protein expression levels to different degrees(PPConclusion: Huangqisan could regulate the glucose and lipid metabolism, alleviate liver pathology and reduce body weight, and its mechanism was probably related to reduction of SREBP-1c, PERK, IRE1α/p-IRE1α proteins expression levels.

SELECTION OF CITATIONS
SEARCH DETAIL